Summation-By-Parts in Time: The Second Derivative

نویسندگان

  • Jan Nordström
  • Tomas Lundquist
چکیده

We analyze the extension of summation-by-parts operators and weak boundary conditions for solving initial boundary value problems involving second derivatives in time. A wide formulation is obtained by first rewriting the problem on first order form. This formulation leads to optimally sharp fully discrete energy estimates, are unconditionally stable and high order accurate. Furthermore, it provides a natural way to impose mixed boundary conditions of Robin type including time and space derivatives. We apply the new formulation to the wave equation and derive optimal fully discrete energy estimates for general Robin boundary conditions, including non-reflecting ones. The scheme utilizes wide stencil operators in time, whereas the spatial operators can have both wide and compact stencils. Numerical calculations verify the stability and accuracy of the method. We also include a detailed discussion on the added complications when using compact operators in time and give an example showing that an energy estimate cannot be obtained using a standard second order accurate compact stencil.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Summation by Parts Operators: Second Derivative and Time-Marching Methods

This paper describes extensions of the generalized summation-by-parts (GSBP) framework to the approximation of the second derivative with a variable coefficient and to time integration. GSBP operators for the second derivative lead to more efficient discretizations, relative to the classical finite-difference SBP approach, as they can require fewer nodes for a given order of accuracy. Similarly...

متن کامل

Generalized Summation-by-Parts Operators for the Second Derivative with Variable Coefficients

The comprehensive generalization of summation-by-parts of Del Rey Fernández et al. (J. Comput. Phys., 266, 2014) is extended to approximations of second derivatives with variable coefficients. This enables the construction of second-derivative operators with one or more of the following characteristics: i) non-repeating interior stencil, ii) nonuniform nodal distributions, and iii) exclusion of...

متن کامل

A Unified Framework for Delineation of Ambulatory Holter ECG Events via Analysis of a Multiple-Order Derivative Wavelet-Based Measure

In this study, a new long-duration holter electrocardiogram (ECG) major events detection-delineation algorithm is described which operates based on the false-alarm error bounded segmentation of a decision statistic with simple mathematical origin. To meet this end, first three-lead holter data is pre-processed by implementation of an appropriate bandpass finite-duration impulse response (FIR) f...

متن کامل

A Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation

We present a fourth order accurate finite difference method for the elastic wave equation in second order formulation, where the fourth order accuracy holds in both space and time. The key ingredient of the method is a boundary modified fourth order accurate discretization of the second derivative with variable coefficient, (μ(x)ux)x. This discretization satisfies a summation by parts identity ...

متن کامل

Stable and conservative time propagators for second order hyperbolic systems

In this paper we construct a hierarchy of arbitrary high (even) order accurate explicit time propagators for semi-discrete second order hyperbolic systems. An accurate semi-discrete problem is obtained by approximating the corresponding spatial derivatives using high order accurate finite difference operators satisfying the summation by parts rule. In order to obtain a strictly stable semi-disc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2016